Tag Archives: prototype

Non-Disclosure Agreements in Model Making

NDA form - model making

Often times in the model making business we are asked to sign a Non Disclosure Agreement (NDA) with a client. NDA’s are legal agreements that give protection and reassurance that the information exchanged during a model build will not be shared, or disclosed, with a third-party. The document is usually initiated, or provided by the client (although we have our own generic version we offer) and is often the first step in the quote solicitation process.

Detailed diagrams, CAD drawings, measurements, blue prints, photographs, descriptions and other data are being given to our model makers in order to facilitate the fabrication of a highly accurate and realistic replication of a product or idea. It is important that our clients feel certain that the exchange of information be used for the sole purpose of providing a quality model that meets or exceeds their specific requirements.

Non-disclosure agreements, sometimes referred to as confidentiality agreements, can cover a wide variety of items that are to be kept confidential and may include such things as customer lists, business practices and financial information, along with the more typical documents that are shared with model shops in order to complete a scale model project. The document also specifies the disclosure period to be covered, the length of time the agreement is binding and the exclusions to what needs to be kept confidential. Exclusions usually refer to information that is publicly available and that which has been obtained through other sources.

Another common portion of an NDA is the need to exercise reasonable efforts to keep the shared information secure and to limit its exposure only to those people who need to know it in order to complete the job.

The reasons for NDA’s are as varied as the terms covered in their pages. An  obvious circumstance is when we make a prototype of someone’s patented idea. Often we suggest the NDA ourselves with inventors, knowing that this is an important first step in the process of discussing their innovation.

Frequently our model shop deals with military clients who require additional levels of security. ITAR is a group of government regulations pertaining to defense-related information, services and material. For national security purposes ITAR controlled projects cannot be shared with non-U.S. citizens. Sometimes the engineering information of the project is ITAR controlled, but the end product is not, which means we can share, for instance, a picture of the finished model on our website.

Beyond NDA’s and ITAR controlled projects, there are clients who simply ask us not to share the finished model or the fabrication process on our website, blog or other promotional materials. Often it is simply a matter of timing. Some client wants to keep a new product private until it is officially unveiled at a particular sales event. Another example would be a prop or scale model that we have provided for an exhibit firm, where the design rights reside with them.

In lieu of a formal agreement, KiwiMill has a general policy of not sharing a finished product until it has been shipped and received by our client. Also, if the model is to be unveiled at a trade show, or introduced at a particular sales event, we wait until that event has passed before we publicly post it. While many clients welcome the publicity, and understand the need for self-promotion, we understand that there are a myriad of reasons we may be asked not to divulge finished work.

What’s a Prototype Model?

medical prototype

 

It may seem oddly counter-intuitive, but often the quickest, least expensive way to make a new product is to first make something else – a prototype model.

A prototype model is a special type of model that engineers or designers use to test a product’s properties and function. Prototypes allow engineers to explore design alternatives, test theories and confirm performance all prior to starting production.

Early on in the creation of a new product, a series of prototypes might be designed, fabricated and tested, progressively refining the final iteration. It’s assumed that the initial prototype will have many changes made to it as feedback is given.

The prototype model is a learning tool above all else. Different types of prototypes serve different purposes, and provide specific answers to design questions.

Some prototypes are for proof of concept – they don’t attempt to simulate the finished product in any way. Other prototypes replicate the size, look or feel of the product using simple materials and are meant to be studied but not put to repeated use. Some are constructed out of sturdier materials and are expected to be withstand  rigorous  human interaction during the testing phase. Some prototypes are meant for visual fidelity only. They copy flawlessly the visual appearance of the product for use in photo shoots or executive review. A fully  functional, or working prototype would simulate the final product to the highest degree, or fidelity. This prototype would be for a final check before production began.

So why bother having a prototype instead of the real product? Simply put, a prototype will save time and money in the long run. Prototypes show potential investors or users an idea of what the product looks like in the earliest stages of development. Less expensive materials and manufacturing processes, along with simpler details and engineering, allow for more design options to be tested using prototypes before committing to the production stage. Identifying problems with design early on saves money. Having users test  different designs during the development cycle gives critical feedback that will likely result in a more marketable final product.

It’s cost-effective to make use of prototypes during the design process, and it need not slow the actual time down between the initial idea and it’s arrival on the market. It can in fact speed that process up.