Tag Archives: training model

Underground Storage Tank Cutaway Model

This underground storage tank cutaway model was commissioned for training purposes. It will help owners and operators understand the structure and parts of an underground fuel storage tank. It helps make sure they are staying in compliance with laws governing fuel storage.

Our model makers used client supplied diagrams and actual photographs of gas station pumps to create the cutaway model.

ABS, styrene, acrylic and 3D printed parts were combined to create this display. The resulting cutaway model conveys the information needed for training in an easily understandable way. It makes an effective visual aid.

Valve Replacement Training Model

This training model will familiarize people with the steps of an industrial process before they get into the actual field. The process being simulated is the replacement of a valve on a hydro-electric dam penstock. 

All of this activity takes place deep underground. The training model represents the underground room and the equipment used to replace the valve. The valves on the model have working parts.

The center piece of the training model – the pipe – is 11ft in diameter in real life. KiwiMill replicated the pipe using a 6 inch diameter tube. The rest of the model was scaled around this size. Sometimes it is more economical for the client to have the model’s dimensions determined by parts that are readily available.

Everything was custom fabricated, assembled and painted in a little over a week, and then shipped to Canada for our customer’s immediate use.

Cutaway Scale Model for Training

cutaway model

Our client, FMC Technologies, requested a working model of a gate valve that would assist with maintenance training. Talking with model maker, Scott, it was determined that the best way to serve this purpose would be with a 1/2 scale cutaway model that would pull apart and reveal interior components that could be manipulated. Once the general concept was agreed upon, our team discussed the build in general, and the associated costs and time frame, and a detailed quote was written up.

cutaway model

Once the job was awarded, model makers Mike, Dean and Scott came up with a plan of action including a list of materials, fabrication techniques and assemblies, along with a break down of each task and its associated steps. The over all design of the model would include an exterior shell opening and closing with the use of magnets, a working wheel that would move the gate up and down, and numerous interior pieces that could be assembled and reassembled.

cutaway model

FMC provided 3D geometry which was used to create the various parts of the model. Some parts were 3D printed.

3D printed model part

Others were formed from  machined  tooling board. An aluminum rod with threads was created on the CNC lathe. Metal gate sleeves were formed on a press brake, and some off-the-shelf hardware was added as well. As parts were formed, they were attached to each other as required. Magnets were imbedded in the outer shell.

model making

model maker

Most of the parts were then primed and painted. Various bright colors were used for the individual parts to enhance the training process.

scale model

The whole model was assembled and disassembled multiple times to assure its functionality and durability. The wheel was tested to make sure it moved the gate up and down on the rod correctly. The model was taken for professional photography, then carefully packed and shipped to Canada to our esteemed client.

Click Here for a slideshow of the model build on YouTube.cutaway model

Why Have a Training Model?

training modelindustrial model for trainingHow many people won’t admit that they have trouble reading blueprints or maps? They might smile and nod as they look over a 2D plan, but not everyone’s mind can translate the information spatially into a 3D image in their head. When it comes to safety training and emergency preparedness, do you want to leave things up to chance with a map? Probably not. If you are going to take the time to sit people down and run through a training exercise or plan of action, it makes sense to do everything in your power to make sure everyone understands the procedures being discussed.

How more frequently would you train personnel on a particular apparatus or piece of equipment if you had a realistic replica to work with rather than the real thing? Gaining experience with a product, or learning how to maintain or maneuver equipment is imperative, but not always possible to do with the real thing safely, cost-effectively or without risk of damage through mishandling.

Training models can be of assistance in both of these scenarios.

A scale model of a particular space – be it a building or other structure – reveals its anatomy accurately and clearly. Exits, entrances, traffic flow, escape routes, locations of important objects, all become readily recognizable to the observer. It makes training procedures to follow during an emergency or other incident more understandable. Instead of everyone pretending that they understand the 2D image presentation of where things are located and what directions to follow in particular scenarios, more people will actually be on board. In an emergency, this lay person’s understanding may make the difference between a positive outcome and a hugely negative one. And isn’t that the purpose of preparedness training after all?

Similarly, using a replica of your product or products to train personnel on, is often more cost-effective and efficient to execute. Realistic training models of your products are less expensive versions of the real thing. They can be used in training exercises without risk of damaging the actual product and without the time or logistical complications of procedures done within the real environment. From firearm simulators like BLUEGUNS, to loading and packing training tools for industrial purposes, models are able to improve performance in an economical, yet productive, way.