3D Printer in the Model Shop

We’re getting ready at the model shop for a new 3D printer. This machine will introduce additive processes for model making designed to increase flexibility and productivity.

Model making has traditionally been associated with a subtractive method of fabrication. Meaning, model parts are formed by taking something away from a material through carving, sculpting, cutting, sanding or  chopping.  These extracted parts are then glued together to form the whole model.

Additive methods of model fabrication do the opposite. Instead of sculpting a model out of material by taking away, an object is built up layer by layer. This additive process creates a 3D object from seemingly nothing.  A computer image of the desired part is programmed into the 3D printer.  The machine then creates a solid object by adding successive layers of material in the desired shape and form.

The additive method is fast and efficient, vastly reducing the amount of hand’s on work needed to create a model part. The subtractive method can be sped up as well with the addition of computer numerically controlled (CNC) machines, making rote shaping and carving tasks more autonomous.

These technological advancements  are welcome additions to the model making shop. They cannot replace craftsmanship, experience and artistry. They’re meant to enhance the fabrication process, freeing up our model makers to put their energy and talents toward more essential and complex tasks.

Trade Show Season 2012

The 2012 Trade Show Season is in full swing. Trade shows offer a unique opportunity to generate new leads, launch a new product design and strengthen relationships with existing clients. It’s not too late to plan new ways of meeting these goals by bringing more prospects in to your booth, and creating excitement about what you have to offer once they are there.

More industries are turning to scale model makers to build the center piece for their trade show booth. There are numerous reasons for turning to custom models to sell products. The actual item may be too cumbersome, over-sized, tiny or delicate to display at multiple trade shows. It might lack the visual impact that is called for in the highly charged atmosphere of trade show exhibitors. Emphasizing particular product features may be necessary to stand out from the competition.

While in recent years various multi media has been added to showcase a product’s potential, nothing quite matches the impact that a 3D replica provides. Prospects want to see and touch the product. They want to walk around it and view it from various angles; examine up close how it functions. Custom scale models give a tangible understanding of what is being offered in a format that everyone can easily understand.

Utilizing the newest techniques,  model makers can add features that help a product sell itself. Cut away designs, LED lighting, clear bodies that show interior components all add interest and perspective that allow the product to tell its own story. A working model can even show a product in action. Using electronics, the model can be made to function like the real thing. These special features make for an extra engaging display, making it easier for the sales team to demonstrate the product’s advantages.

A scale model display, complimented by multi media ( pictures,music, animation or videos) makes for a powerful impact. Trade Show participation is a big investment that needs to pay off in terms of exposure and ultimately, sales. It makes sense to use the most powerful tools possible to attract and focus potential clients on your product in a way that leaves a lasting impression.

photo credit: EDubya

Young Person’s Visit to the Model Shop

young model maker

 As a visitor, you never know what to expect when you’re planning to enter a model shop facility. My first visit to KiwiMill I had no clue what to be ready for. I predicted there would be a couple of machines around, surrounded by workers wearing goggles sawing away at pieces of wood. Maybe you imagine an assembly line of drone-like workers painfully going through the motions of a day’s work. What I saw was much different from what I expected.

I attended one of the group meetings, where the crew discussed things like job offers, budget, deadline, and the tools that might be required for future jobs. Even though you might not understand all the words that these model makers use during meetings, you can see that they get down to every last detail, and that it’s fundamental for this crew to go over every detail, because they know that it’s all important.

I got to participate in packing up some of the models that the crew had created. Wrapping things in bubble wrap, gluing foam into boxes, and then taping them up doesn’t seem like a very hard job to do. Even though it may not be, you can see that the crew puts effort into making even their packages look presentable for their customers.

Every model maker is different: All model makers specialize in something. Something that they are the best at. Don’t get me wrong, that doesn’t mean that they can’t do things that others can do, because they can. It just means that when there’s a job that focuses on a specific specialty, the boss will call on the expert to help by teaching others.

Overall, I learned a lot of things about model makers. I learned about their business world. I learned that they are very precise with their work, and do everything in their power to please their customers.

From what I’ve seen I think that all model making companies could take some tips from KiwiMill.

– Sam Symes, age 13.

Production Processes for Multiple Scale Models

Custom scale models are often one time only builds. Model makers are given an object, picture or design, they draw up the parts in 3D and set about constructing the item. Whether the finished product ends up in a museum, sales office, board room or trade show booth, it is often a one-of-a-kind model that won’t be repeated.

Occasionally, though, a model shop is given as assignment to make multiple scale models of the same design. Sometimes these are requested all at once, and other times a model shop will repeat models on an as-needed basis.

It is these types of projects that turn the model shop into a temporary production facility of sorts. A systematic approach is developed to create multiple parts in an efficient, orderly fashion. Using fabrication techniques such as casting, CNC milling, 3D printing and lasering, multiples of the same part are created.

When it comes time to assemble parts for duplicate models, jigs are designed. A jig is a tool used to control the location or motion of another tool. The jig’s primary purpose is to provide repeatability, consistency and efficiency.

Creating multiple scale models of the same object requires certain upfront approaches that would be unnecessary for a one-time build. Duplicate models are still custom-built, but fabrication techniques and production processes are controlled and streamlined in order to create a consistent product, over and over, in a reasonable time-frame.

Progression of a NASA Spacecraft Model

The following pictorial shows the progression of a NASA spacecraft model build:

 

From the NASA Magnetospheric Multiscale (MMS) Mission  website:

“The Magnetospheric Multiscale (MMS) mission is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration, and turbulence. These processes occur in all astrophysical plasma systems but can be studied in situ only in our solar system and most efficiently only in Earth’s magnetosphere, where they control the dynamics of the geospace environment and play an important role in the processes known as ‘space weather.'”